

Purpose of Meeting

- To update the group on the status of Shasta River TMDL development efforts
- To get your input
- To answer your questions

Outline

- > Introductions
- > TMDL schedule
- Dissolved oxygen conceptual model
- 2004 monitoring results
- > Status of modeling and assessment tasks
- > Feedback Q &A

Introductions

TMDL Schedule

- Public review draft of technical TMDL February 2005
- TMDL implementation plan development Ongoing until December 2005
- Regional Water Board adoption of TMDL December 2005
- > EPA approval of TMDL January 2007
- > TMDL implementation February 2007

Factors Affecting Dissolved Oxygen in the Shasta River

Dissolved Oxygen Sources

- Reaeration
- Photosynthesis

Dissolved Oxygen Sinks

- Respiration
- •Sediment Oxygen Demand (SOD)
- •Carbonaceous Deoxygenation (CBOD)

2004 Monitoring

- Aquatic vegetation surveys Characterized spatial distribution, composition, and biomass of aquatic plants
- Stream sediment size characterization Visual estimates of percent composition by particle size classes
- Riparian vegetation characterization Visual estimates of riparian density classes

2004 Monitoring

- Light intensity measurements LI-COR Radiation Sensor
- Water quality monitoring
 - 1. Discrete and continuous (July 30 August 5) measurement of temperature, dissolved oxygen, pH, and specific conductance
 - 2. Temperatures of tailwater return flows
 - 3. End of irrigation season nutrient grab sammples
 - 4. Stable isotopes of water and aquatic plants

Public review draft available

"Shasta River Water Quality Related Investigations - 2004"

Aquatic Veg Survey - Key Results

- Walked or floated 2/3 of river from Dwinnell Dam to mouth
- Rooted vascular plants (macrophytes) dominant plant community
- Identified 19 species of macrophytes Dominant macrophyte species: Potamogeton spp. & Elodea canadensis
- ➤ Range of cover: 0 90%
- Large variation in biomass

Potomogeton spp.

Potamogeton pectinatus

Elodea canadensis

Factors controlling macrophyte presence and biomass:

- Water velocity
- Stream gradient
- Light availability (riparian shade)
- > Water depth
- Stream bottom sediment composition

Attached algae – key findings

- Identified 75 algae species
- Most species common to "productive" rivers
- Large variation in cover
- Moderate variation in biomass
- Factors controlling cover & biomass include:
 - Stream bottom sediment composition
 - Light availability
 - Water depth
 - Water velocity

Modeling and Assessment Tasks

- Numerical Flow and Water Quality Modeling
- Primary Productions Limiting Factor Analysis
- Lake Shastina Limnological Assessment

Numerical Flow and Water Quality Analysis

- > The Models
- > Model Calibration
 - Review
 - Updates and modifications
- Model Application

The Models

- Tennessee Valley Authority (TVA): coupled hydrodynamics and water quality
- > ADYN flow (hydrodynamics)
 - St Venant Equation (full momentum representation)
- > RQUAL water quality
 - Advection (no diffusion) equation
- \triangleright Finite difference models with variable $\triangle x$

- velocity
- depth
- cross sectional area
- water surface area flow

Boundary Conditions

- headwater and tributary flow
- diversions and return flows
- accretion/depletion

Geometric Description

- x-y description
- gradient
- cross section
- Riparian vegetation shading

RQUAL

- water temperature
- dissolved oxygen
- Biochemical Oxygen demand (BOD)
- Nitrogenous Biochemical Oxygen demand (NBOD)

Boundary Conditions

- headwater and tributary flow: Tw, DO, BOD, NBOD
- diversions and return flows: Tw, DO, BOD, NBOD
- accretion/depletion
- sediment oxygen demand

Output

- tabular
- graphical/animation

Model Objective

- > Represent
 - Water temperature
 - Dissolved oxygen dynamics
- > In response to...
 - BOD
 - NBOD
 - Benthic algae and macrophytes
 - Sediment oxygen demand (SOD)
 - Riparian shading
 - Boundary conditions (alternatives)

Model Calibration

- > Previous work
- > Model modifications
- > Calibration status

Previous Work

- ➤ U.C. Davis (1997): different modeling framework
- Extended previous TVA modeling work (Alida Abbott, 2002): cooperative effort sponsored by Shasta Valley RCD with funding from CDFG and USFWS (Task Force)

Model Modifications

- > Extended to Dwinnell Dam
- Updated boundary conditions with 2002 and 2003 data
- Re-assessed shading characteristics
- Implemented latest UTM river description

Calibration Status

- > Flow: complete
- > Temperature: complete
- > Dissolved oxygen: preliminary
- > BOD: preliminary

Calibration: Flow

Calibration: Flow

Calibration: Flow

Calibration: Temperature

Calibration: Temperature

Calibration: Temperature

Primary Productions Limiting Factor Analysis

- > Nutrients
 - → Primary Production (macrophytes)
 - → Dissolved Oxygen
- > Primary Production: function of...
 - Nutrients
 - Light
 - Substrate (presumed widely available)

Lake Shastina Limnological Assessment

- > Literature review
- > Data assessment
- > Document current status and conditions

Questions/Comments?